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Abstract

This paper reports a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behaviour on
particle wetting surfaces typically for the system of liquid–gas of a large density ratio. The method combines the existing
models of Inamuro et al. [T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible
two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628–644] and Briant et al. [A.J. Briant, P. Papa-
tzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid–gas system, Philos. Trans. Roy.
Soc. London A 360 (2002) 485–495; A.J. Briant, A.J. Wagner, J.M. Yeomans, Lattice Boltzmann simulations of contact
line motion: I. Liquid–gas systems. Phys. Rev. E 69 (2004) 031602; A.J. Briant, J.M. Yeomans, Lattice Boltzmann simu-
lations of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603] and has developed novel treatment for
partial wetting boundaries which involve droplets spreading on a hydrophobic surface combined with the surface of rel-
ative low contact angles and strips of relative high contact angles. The interaction between the fluid–fluid interface and the
partial wetting wall has been typically considered. Applying the current method, the dynamics of liquid drops on uniform
and heterogeneous wetting walls are simulated numerically. The results of the simulation agree well with those of theoret-
ical prediction and show that the present LBM can be used as a reliable way to study fluidic control on heterogeneous
surfaces and other wetting related subjects.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, the LBM has become an established numerical scheme for simulating multi-phase fluid
flows. The key idea behind the LBM is to recover correct macroscopic motion of fluid by incorporating the
complicated physics of problem into a simplified microscopic models or mesoscopic kinetic equations. In this
method, kinetic equations of particle velocity distribution function are first solved; macroscopic quantities are
then obtained by evaluating hydrodynamic moments of the distribution function. This intrinsic feature
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enables the LBM to model phase segregation and interfacial dynamics of multi-phase flow, which are difficult
to be handled by applying conventional CFD methods or employing the molecular dynamics (MD) method to
incorporate intermolecular interactions at mesoscopic level. The LBM has demonstrated a significant poten-
tial and broad applicability with many computational advantages including the parallel of algorithm and the
simplicity of programming [5]. In order to simulate multi-phase fluid flows, Gunstensen et al. [6] developed a
multi-component LBM on the basis of two-component lattice gas model. Shan and Chen [7] presented a LBM
model with mean-field interactions for multi-phase and multi-component fluid flows. Later, Swift et al. [8,9]
proposed a LBM model for multi-phase and multi-component flows using the idea of free energy; He et al. [10]
developed a model using the index function to track the interface of multi-phase flow. Although the LBM is a
promising method for multi-component/phase flows, one of disadvantages is that all the schemes listed above
are limited to small density ratio (less than 20) due to numerical instability. Obviously, this is not realistic for
most two-phase systems e.g. the density ratio of liquid–gas systems is usually larger than 100, and even the
density ratio of water to air is about 1000. To overcome this difficulty, Inamuro et al. [1] proposed a LBM
for incompressible two-phase flows with large density differences by using the projection method. In this
method, two particle velocity distribution functions are used. One is used for calculating the order parameter
to track the interface between two different fluids; the other is for calculating the predicted velocity field with-
out pressure gradient. The corrected velocity satisfying the continuity equation can be obtained by solving a
Poisson equation.

As we all know that, when a liquid–gas interface meets a solid surface, capillary forces drive it towards equi-
librium. A finite steady-state contact angle, known as partial wetting, can be reached due to the balance of
surface tension forces. There is a large class of industrial processes which involve motions of multi-phase fluids
on a partial wetting surface. The operations ranging from painting, coating, inkjet printing to lubrication and
gluing are a few examples. Therefore, Briant et al. [2–4] developed an approach based on the free-energy LBM
model introduced by Swift et al. [8,9] to simulate partial wetting and contact line motion in single or two-com-
ponent, two-phase fluids. Unfortunately, this method naturally inherits the disadvantage of the original free-
energy LBM model of Swift et al. and can only be used to simulate two-phase problems with a small density
ratio. The maximum density ratio in the simulations of droplets on partial wetting surfaces [11–13] was
reported just around 2.

Obviously, in order to simulate a flow of two-phase fluids with a large density ratio on a partial wetting
wall, a new scheme of the LBM is needed. The aim of this paper is to develop such type of scheme combining
the advantages of both methods developed by Inamuro et al. [1] and Briant et al. [2–4] to simulate the complex
two-phase flow on partial wetting surface. In the present study, the dynamics of liquid drops on uniform and
heterogeneous wetting walls is simulated numerically by the proposed method. The results of simulation are
compared with those of theoretical predictions.

2. New scheme of the lattice Boltzmann method

A new scheme of the lattice Boltzmann method for simulating two-phase fluid with a large density ratio and
meanwhile dealing with the interaction between fluid–fluid interface and a partial wetting wall is proposed and
described below.

2.1. Two-phase lattice Boltzmann model

For a three-dimensional 15-velocity (D3Q15) LBM model, as shown in Fig. 1, the particle velocity, ea

(a = 0,1, . . . , 14), is given by
½e0; e1; e2; e3; e4; e5; e6; e7; e8; e9; e10; e11; e12; e13; e14�

¼
0 1 0 0 �1 0 0 1 �1 1 1 �1 1 �1 �1

0 0 1 0 0 �1 0 1 1 �1 1 �1 �1 1 �1

0 0 0 1 0 0 �1 1 1 1 �1 �1 �1 �1 1

2
64

3
75: ð1Þ
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Fig. 1. Discrete velocity set of three-dimensional 15-velocity (D3Q15) model.
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To simulate a two-phase fluid flow, two particle velocity distribution functions, fa and ga, are introduced.
Function fa is used to calculate the order parameter, /, which distinguishes the two phases. Function ga is used
to calculate the predicted velocity, u*, of the two-phase fluids without a pressure gradient. The evolution of the
particle distribution functions fa(x, t) and ga(x, t) with particle velocity ea at the point x and time t is calculated
by the following equations:
faðxþ eadt; t þ dtÞ ¼ f ðeqÞ
a ðx; tÞ; ð2Þ

gaðxþ eadt; t þ dtÞ ¼ gðeqÞ
a ðx; tÞ; ð3Þ
where dt = 1 is the time step during which the particles travel the lattice spacing; f ðeqÞ
a and gðeqÞ

a are the
corresponding equilibrium states of fa and ga, given by
f ðeqÞ
a ðx; tÞ ¼ H a/þ F a p0 � k/r2/� k

6
jr/j2

� �
þ 3xa/ðe0a � uÞ þ xake0a �Gð/Þ � ea; ð4Þ

gðeqÞ
a ðx; tÞ ¼ xa 1þ 3ðe0a � uÞ þ

9

2
ðe0a � uÞ

2 � 3

2
u2 þ 3

4
e0a � ðruþ urÞ � ea

� �

þ xa
k
q

e0a �Gð/Þ � ea �
2

3
F a

k
q
jr/j2 þ 3xa

1

q
r � ½lðruþ urÞ� � ea; ð5Þ
where u, q and l are the macroscopic velocity, density and dynamic viscosity, respectively
xa ¼
2=9; a ¼ 0;

1=9; a ¼ 1; . . . ; 6;

1=72; a ¼ 7; . . . ; 14;

8><
>: F a ¼

�7=3; a ¼ 0;

1=3; a ¼ 1; . . . ; 6;

1=24; a ¼ 7; . . . ; 14;

8><
>: H a ¼

1; a ¼ 0;

0; a ¼ 1; . . . ; 14

�
ð6Þ
and
Gð/Þ ¼ 9

2
ðr/Þð/rÞ � 3

2
r/j j2I: ð7Þ
In the above equations, k is a constant parameter for determining the width of interface and the strength of
surface tension; I is a unit tensor of second-order. Given that w(/) is the bulk free-energy density, then
p0 ¼ /
ow
o/
� w: ð8Þ
The macroscopic quantities, u*, /, q, l can be evaluated as
/ ¼
X

a

fa; u� ¼
X

a

eaga; ð9Þ
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q ¼
qG; / < /G;
/�/G

/L�/G
ðqL � qGÞ þ qG; /G 6 / 6 /L;

qL; / > /L;

8><
>: ð10Þ

l ¼ q� qG

qL � qG

ðlL � lGÞ þ lG; ð11Þ
where /L and /G are respectively the maximum and minimum order parameter for marking bulk liquid and
gas; qL and qG are respectively the density of liquid and gas phases; lL and lG are respectively the dynamic
viscosity of liquid and gas phases. In Eq. (10), a simple linear function, rather than the sine function used in
Inamuro’s model [1], of order parameter is applied to approximate the density within the interface; this en-
ables the present method to obtain f ðeqÞ

a ðx; tÞ and gðeqÞ
a ðx; tÞ in a more simplified form and thereby cost less

for computational resource. For example, the calculations of second-order tensor G(q), first partial derivative
of q, etc., which are necessary in Inamuro’s model [1], can be avoided in the present method.

It should be pointed out that the predicted velocity u* is not divergence free. To obtain the velocity field
which satisfies the continuity equation ($ Æ u = 0), u* is corrected by following equations:
u� u� ¼ �rp
q
; ð12Þ

r � u� ¼ r � rp
q

� �
; ð13Þ
where p is the pressure of the two-phase fluid, which can be obtained by solving Eq. (13) in the following LBM
framework:
haðxþ ea; nþ 1Þ ¼ haðx; nÞ �
1

s
½haðx; nÞ � xapðx; nÞ� � xa

3

1

q
r � u�; ð14Þ
where n is the number of iterations and s = 0.5 + 1/q is the relaxation time. The pressure at step n + 1 is given
by
pðx; nþ 1Þ ¼
X

a

haðx; nþ 1Þ: ð15Þ
The convergent pressure p is determined when
8x 2 V ; jpðx; nþ 1Þ � pðx; nþ 1Þj < e; ð16Þ

where V denotes the whole computational domain. Substituting the newly obtained pressure p into and solving
Eq. (12) gives the corrected velocity field u. This method can be used to simulate two-phase flows with the
density ratio up to 1000 [1].

2.2. Partial wetting boundary

To implement the wetting boundary condition, here a Landau free-energy function [3,4] is introduced as
W ¼
Z

V
dV ½wð/Þ þ kðr/Þ2=2�; ð17Þ
where the square of gradient term on the right-hand side of the equation expresses the contribution to the free-
energy excess of the interfacial region which defines the surface energy. Obviously, the bulk free-energy density
w(/) should be defined first of all. In this paper, a new form of free energy (rather than the van der Waals free
energy used in the traditional free-energy model) is proposed to calculate wall–fluid surface tensions in a
closed form. For an isothermal system, assuming the free-energy density w(/) takes the following simple form
particularly as [14]
wð/Þ ¼ bð/� /GÞ
2ð/� /LÞ

2 þ lb/� pb; ð18Þ

where b is the constant relating to interfacial thickness. Differentiation of Eq. (18) yields the chemical potential
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lc ¼ 4bð/� /LÞð/� /GÞð/� /MÞ þ lb; ð19Þ

where /M = (/L + /G)/2; lb and pb are the bulk chemical potential and bulk pressure, respectively.

By substitution of Eq. (18), Eq. (8) becomes
p0 ¼ bð/� /LÞð/� /GÞð3/2 � //L � //G � /L/GÞ þ pb: ð20Þ

Let b = 0.5, /G = 0.1 and /L = 0.4, a corresponding (p0 � pb)–/ diagram is obtained as shown in Fig. 2. It
can be seen from the figure that there exist four possible solutions of / which satisfy the condition of
p0 = pb. Two of them (points B and D), where / = /L and /G, represent two different phases. The others
(points A and C) lie on the unstable portions of the curve where dp0=d/ < 0. This unstable mechanism forces
the fluid into one of its two separate stable states, causing phase segregation.

In a plane interface under an equilibrium condition, the density profile across the interface on equilibrium is
represented as
/ðzÞ ¼ /L þ /G

2
þ /L � /G

2
tanh

2z
D

� �
; ð21Þ
where z is the coordinate normal to the interface; the interface thickness D is given by
D ¼ 4

/L � /G

ffiffiffiffiffiffi
k

2b

s
: ð22Þ
The fluid–fluid (liquid–gas) surface tension force rLG is expressed as [15]
rLG ¼
ð/L � /GÞ

3

6

ffiffiffiffiffiffiffiffi
2kb

p
: ð23Þ
According to the Young’s law [16], when a liquid–gas interface meets a partial wetting solid wall, the contact
angle, hw, measured in the liquid, can be calculated from a balance of surface tension forces at the contact line
as
cos hw ¼
rSG � rSL

rLG

; ð24Þ
where rSG and rSL are the solid–gas and solid–liquid surface tension forces, respectively. To calculate the sur-
face tension forces rSG and rSL within a mean field framework, Cahn [17] assumed that the fluid–solid inter-
actions are sufficiently short-range such that they contribute a surface integral to the total free energy of the
system. Therefore, the total free energy becomes
Fig. 2. (p0 � pb)–/ diagram at b = 0.5, /G = 0.1 and /L = 0.4.
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W ¼
Z

V
dV ½wð/Þ þ kðr/Þ2=2� þ

Z
s

dSUð/sÞ; ð25Þ
where /s is the order parameter on the wall; S is the surface of volume V.
Now, a one-dimensional problem is considered; where one phase of the non-ideal fluid occupies the region

z > 0 with a solid wall at z = 0. The order parameter far from the wall will be /L or /G; while at the wall, /
= /s. Remaining only the first-order term of power series expansion with respect to /s of U(/s), i.e.
U(/s) = �k/s, Eq. (25) is reduced to
W ¼
Z

V
dz½wð/Þ þ kðd/=dzÞ2=2� � k/s: ð26Þ
Minimizing Eq. (26) by variational calculus subject to natural boundary conditions leads to two conditions as [2]
ow
o/
� k

d2/
dz2
¼ lb for z > 0 ð27Þ
and
k
d/
dz

� �
¼ dUð/sÞ

d/s
¼ �k for z ¼ 0: ð28Þ
A first integral for Eq. (27) yields
k
2

d/
dz

� �2

¼ bð/� /GÞ
2ð/� /LÞ

2 ¼ W ð/Þ; ð29Þ
then /s can be determined by substituting Eq. (29) into Eq. (28) and be written as
�k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kW ð/sÞ

p
: ð30Þ
Four solutions, /1 < /2 < /3 < /4, can be obtained from Eq. (30) if k is smaller than the height of the double
well function defined by

ffiffiffiffiffiffiffiffiffiffi
2kW
p

[17]. The corresponding results are
/1 ¼
/L þ /G

2
� /L � /G

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jXj

p
; ð31Þ

/2 ¼
/L þ /G

2
� /L � /G

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jXj

p
; ð32Þ

/3 ¼
/L þ /G

2
þ /L � /G

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jXj

p
; ð33Þ

/4 ¼
/L þ /G

2
þ /L � /G

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jXj

p
; ð34Þ
where X is the wetting potential given by
X ¼ 4k

ð/L � /GÞ
2 ffiffiffiffiffiffiffiffi

2kb
p : ð35Þ
The surface tension between wall and fluid, rSF, is given by
rSF ¼ �k/s þ
Z ffiffiffiffiffiffiffiffiffiffi

2kW
p

d/: ð36Þ
For k > 0, the minimized solutions are /2 if the fluid contacting the wall is a gas and /4 if the fluid is a liquid.
Sequentially, the following expressions for surface tensions are obtained:
rSG ¼ �k/2 þ
Z /2

/G

ffiffiffiffiffiffiffiffiffiffi
2kW
p

d/ ¼ �k
/L þ /G

2
þ rLG

2
� rLG

2
ð1� XÞ3=2

; ð37Þ

rSL ¼ �k/4 þ
Z /4

/L

ffiffiffiffiffiffiffiffiffiffi
2kW
p

d/ ¼ �k
/L þ /G

2
þ rLG

2
� rLG

2
ð1þ XÞ3=2

: ð38Þ
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Similarly, the corresponding surface tensions for k < 0 are given by
rSG ¼ �k/1 þ
Z /G

/1

ffiffiffiffiffiffiffiffiffiffi
2kW
p

d/ ¼ �k
/L þ /G

2
þ rLG

2
� rLG

2
ð1� XÞ3=2

; ð39Þ

rSL ¼ �k/3 þ
Z /L

/3

ffiffiffiffiffiffiffiffiffiffi
2kW
p

d/ ¼ �k
/L þ /G

2
þ rLG

2
� rLG

2
ð1þ XÞ3=2

: ð40Þ
The wetting angle is determined by substituting Eqs. (23), (37)–(40) into Eq. (24) and written as
cos hw ¼
ð1þ XÞ3=2 � ð1� XÞ3=2

2
: ð41Þ
For a given wetting angle in the range of 0 < hw < p, X can be obtained from Eq. (41) as
X ¼ 2sgn
p
2
� hw

� 	
cos

c
3

� 	
1� cos

c
3

� 	h in o1=2

; ð42Þ
where c = arccos(sin2hw) and sgn(n) gives the sign of n. It is noted from Eq. (42) that the required wetting
potential X can be obtained by choosing a desired contact angle hw and then calculating k by solving Eq.
(35) with the newly obtained X.

Since Eq. (28) is at an equilibrium condition, it is appropriate to be imposed through the equilibrium dis-
tribution functions f ðeqÞ

a and gðeqÞ
a . Therefore, in order to introduce a partial wetting wall into the LBM sim-

ulation, the following boundary conditions should be imposed on the lattices sites which represent the wall to
close Eqs. (4) and (5):
o/
oz






z¼0

¼ � k
k
; ð43Þ

o2/
oz2






z¼0

� 1

2
�3

o/
oz






z¼0

þ 4
o/
oz






z¼1

� o/
oz






z¼2

� �
; ð44Þ
where z is the direction perpendicular to the wall. In this scheme, Eq. (43) is used to determine the first term on
the right-hand side of Eq. (44). The second term is calculated by a standard centred finite-difference formula.
Finally, Briant et al. [2] have found empirically that the best choice for the third term is a left-handed finite-
difference formula taken back into the wall, namely
o/
oz






z¼2

� 1

2
ð3/jz¼2 � 4/jz¼1 þ /jz¼0Þ: ð45Þ
3. Results and discussion

The motion of water droplets at normal temperature surrounded by air on a partial wetting wall is consid-
ered. The gravitational force is taken into account by adding the term �3xaea3(1 � q G/q)g to the right-hand
side of Eq. (3), where g is the dimensionless gravitational acceleration. Naturally, the densities of two fluids are
set at ~qL ¼ 1� 103 kg m�3 and ~qG ¼ 1:29 kg m�3 (density ratio is about 775), meanwhile the dynamic viscos-
ities of them are at ~lL ¼ 1� 10�3 kg m�1 s�1 and ~lG ¼ 1:935� 10�5 kg m�1 s�1, respectively. The initial surface
tension between water and air is of ~rLG ¼ 1� 10�3 kg s�2 and the gravitational acceleration is set at ~g ¼
9:8 m s�2. To relate the physical parameters with simulation parameters, a length scale of L0 = 1 · 10�4 m, time
scale of T0 = 1 · 10�6 s and mass scale of M0 = 1 · 10�12 kg are chosen; these lead to the dimensionless param-
eters: qL = 1 · 103; qG = 1.29; lL = 0.1; lG = 1.935 · 10�3; /L = 0.4; /G = 0.1; k = 0.05; and g = 9.8 · 10�8.
Unless otherwise specified, the flowing simulations are within a cuboid computational domain with a no-slip
boundary at the lower surface, i.e. the flat partial wetting wall and the free outflow/inflow boundaries at the
other five surfaces. e in Eq. (16) is set as e = 1 · 10�6.

Firstly, the method is applied to the problems of a water droplet spreading on a uniform wetting surface.
Initially, as shown in Fig. 3, the shape of droplet is spherical, the distance between the centre of the sphere and
the wall is of r = 1 · 10�3 m; where r is the radius of the initial droplet. The computational domain is filled
with air except the location occupied by the water and is divided into 80 · 80 · 60 uniform cubic lattices.



Fig. 3. Computational domain.
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In Fig. 4, the droplet is put above a hydrophilic wall. The droplet spreads as time marching, and finally
reaches an equilibrium shape; while the contact angle approximates to the initially predicted value, i.e.
hw = p/4. Similar to the conventional CFD method, the numerical instabilities of the LBM for two-phase
flows with large density ratios are mainly caused by spurious velocities and/or large oscillations of pressure
distribution across the phase interface. The spurious velocities can lead to a violation of the continuity equa-
tion, while the larger oscillations of the pressure on the interface may often cause the method to be unstable;
thus, the method is, in fact, restricted only to the flow of a smaller density ratio. Therefore, both pressure and
velocity distributions across the interface are normally excellent indicators for numerical stability of the LBM
method for two-phase flows with large density ratios [18]. In the present method, both velocities and pressures
are corrected by solving an additional Poisson equation after each collision-stream step. Thus, such correc-
tions are able to make the velocity field to satisfy the continuity equation and to smooth the pressure distri-
Fig. 4. Snapshots of droplet spreading on a uniform hydrophilic surface, hw = p/4.
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bution across the interface, so that to ensure the numerical stability. In Fig. 5, a velocity field on the cross
section of x = Lx/2 at t = 0.006 s, where the solid line is the interface between two phases, is given to show
that the present method can obtain a stable and reasonable velocity distribution.

Fig. 6 shows evolutions with time of the droplet on a flat moderate wall. The contacting area increases with
time due to the effect of gravity, the droplet finally reaches an equilibrium shape with contact angle hw = p/2.

Fig. 7 shows the equilibrium interfacial shapes at x = Lx/2 under initial conditions of hw = p/4 and hw = p/
2, respectively. By measuring the obtained equilibrium contact angles, it is noted that the results of the sim-
ulation agree well with those of initial prediction, i.e. hw = p/4 for the dashed line interface and hw = p/2 for
Fig. 5. Velocity distribution on the cross section of x = Lx/2, hw = p/4, t = 0.006 s.

Fig. 6. Snapshots of a droplet spreading on a uniform moderate surface, hw = p/2.
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the solid line interface. This indicates that the present LBM can be used as a reliable way to study fluidic con-
trol of wetting related subjects.

Fig. 8 shows how a small hemispherical water droplet evolves with time on a heterogeneous surface. A nar-
row hydrophobic strip with width of l = 6 · 10�4 m is located at the centreline of the surface where hw = 5p/6,
and the other areas are occupied by the hydrophilic surface with hw = p/6. The initial droplet which has a
radius r = 1.5 · 10�3 m is set at the centre of the wetting surface. As shown in Fig. 8, the droplet stretches over
the area occupied by the hydrophilic surface in the early stages of flow evolution due to the adhesive force of
the surface. At the same time, the droplet rapidly contracts inward along the hydrophobic strip. With the
development of time, the droplet spreads further on the hydrophilic area, and meanwhile contracts inward
along the hydrophobic strip and finally breaks up into two smaller droplets. The newly formed droplets con-
tinue spreading until an equilibrium state is reached. For a uniform hydrophilic surface separated by a hydro-
phobic strip, the spreading dynamics of the droplet is affected by three parameters, namely, the width of the
Fig. 7. Equilibrium interfacial shapes at x = Lx/2.

Fig. 8. Snapshots of a droplet spreading on a heterogeneous surface with a hydrophobic strip.
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hydrophobic strip, the gravity and the wetting property of the hydrophilic surface [19]. A further examination
and analysis of the effects of these three parameters on spreading and break-up of the droplet will be con-
ducted in the near future.

Finally, a single droplet spreading on a heterogeneous surface with intersecting hydrophobic strips is sim-
ulated. As shown in Fig. 9, two cross hydrophobic strips (hw = 5p/9) with width of l = 9 · 10�4 m are located
Fig. 9. Snapshots of a droplet spreading on a heterogeneous surface with intersecting hydrophobic strips.

Fig. 10. Contact line for t = 0–0.09 s with a 0.01 s interval.
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at the centreline of the square surface, the other areas are occupied by the hydrophilic surface with hw = p/4.
Initially, the droplet has a shape of spherical cap with radius of r = 2 · 10�3 m and height of h = 1 · 10�3 m,
and is set at the centre of the surface. The shape evolution of the droplet with time is shown in Fig. 9. From the
figure, it can be seen that the droplet symmetrically spreads into four hydrophilic sections with the develop-
ment of time and finally reaches a equilibrium state with a shape of four-leaved flower. Fig. 10 shows the cor-
responding contact line when t increases from 0 to 0.09 s with an interval of 0.01 s. It is noted by examining the
contact lines at t = 0 and 0.01 s, respectively, that the droplet experiences a process of contracting inward
along the hydrophobic strips at early stage of the evolution.

4. Conclusions

In this paper, a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behav-
iour on particle wetting surfaces typically for the system of liquid–gas of a large density ratio has been devel-
oped. The method combines the existing models of Inamuro et al. [1] and Briant et al. [2–4] and has developed
a novel treatment for partial wetting boundaries which existing when a liquid droplet spreads on a partial wet-
ting surface. In the present study, a water droplet in air (density ratio of 775) spreading on three types of par-
tial wetting surface are studied and simulated based on the current LBM scheme. One is the liquid droplet
spreading on a wetting surface with uniform contact angle. The other is a droplet spreading on a heteroge-
neous wetting wall which combines a uniform hydrophilic surface of low contact angle with a hydrophobic
strip of high contact angle; the third case is concerned with a droplet spreading on a wetting surface combined
with cross hydrophobic strips. The interactions between the fluid–fluid interface and the partial wetting wall
are typically considered in the simulations. The obtained equilibrium contact angles of a droplet spreading on
uniform surfaces agree well with those of initial settings. Furthermore, the phenomena of a droplet spreading
and breaking up into smaller droplets on a heterogeneous wetting surface have been successfully simulated.
These indicate that the present LBM can be used as a reliable way to study fluidic control on heterogeneous
surfaces and other wetting related subjects. The current paper mainly focuses on describing the numerical
method and case studies; the physical factors influencing droplets spreading and break-up on heterogeneous
surfaces and accurate experimental validations will be carried out in the near future.

Acknowledgment

This work is supported by the UK EPSRC (Engineering Physical Science Research Council) under grant
EP/D500125/1.

References

[1] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density
differences, J. Comput. Phys. 198 (2004) 628–644.

[2] A.J. Briant, P. Papatzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid–gas system, Philos.
Trans. Roy. Soc. London A 360 (2002) 485–495.

[3] A.J. Briant, A.J. Wagner, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid–gas systems, Phys. Rev. E
69 (2004) 031602.

[4] A.J. Briant, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603.
[5] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech. 30 (1998) 329–364.
[6] A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Lattice Boltzmann model of immiscible fluids, Phys. Rev. A 43 (1991) 4320–

4327.
[7] X.W. Shan, H.D. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47 (1993)

1815–1819.
[8] M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett. 75 (1995) 830–833.
[9] M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulations of liquid–gas and binary fluid systems, Phys.

Rev. E 54 (1996) 5041–5052.
[10] X.Y. He, S.Y. Chen, R.Y. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of

Rayleigh–Taylor instability, J. Comput. Phys. 152 (1999) 642–663.
[11] A. Dupuis, J.M. Yeomans, Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces, Future Gener. Comput.

Syst. 20 (2004) 993–1001.



Y.Y. Yan, Y.Q. Zu / Journal of Computational Physics 227 (2007) 763–775 775
[12] A. Dupuis, J.M. Yeomans, Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions, Langmuir 21 (2005)
2624–2629.

[13] H. Kusumaatmaja, A. Dupuis, J.M. Yeomans, Lattice Boltzmann simulations of drop dynamics, Math. Comput. Simul. 72 (2006)
160–164.

[14] D. Jamet, O. Lebaigue, N. Coutris, J.M. Delhaye, The second gradient theory: a tool for the direct numerical simulation of liquid–
vapor flows with phase-change, Nucl. Eng. Des. 204 (2001) 155–166.

[15] J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity, Clarendon, Oxford, 1989.
[16] T. Young, An essay on the cohesion of fluids, Philos. Trans. Roy. Soc. London 95 (1805) 65–87.
[17] J.W. Cahn, Critical-point wetting, J. Chem. Phys. 66 (1977) 3667–3672.
[18] T. Lee, C.L. Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high

density ratio, J. Comput. Phys. 206 (2005) 16–47.
[19] Q.M. Chang, J.I.D. Alexander, Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method,

Microfluid. Nanofluid. 2 (2006) 309–326.


	A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio
	Introduction
	New scheme of the lattice Boltzmann method
	Two-phase lattice Boltzmann model
	Partial wetting boundary

	Results and discussion
	Conclusions
	Acknowledgment
	References


